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Abstract

During financial crises equity portfolios have suffered large losses.

Methodologies for portfolio selection taking into account the possibility

of large losses have existed for decades but their economic value is not

well established. This article investigates the economic value in reduc-

ing the probability of large losses in portfolio selection. We combine

mean-variance analysis with semi-parametric estimation of potential

portfolio large losses. We find that strategies that reduce the proba-

bility of large losses outperform efficient minimum variance portfolios,

especially when semi-parametric estimation is used. Our results are

robust to transaction costs.
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1 Introduction

Portfolio selection with controlled downside risk is a problem of acute practi-

cal interest. Large losses in financial portfolios are more frequent and larger

than expected under the classical Markowitz (1952) framework. This is due

to the non-normality of asset returns and has been recognized since Mandel-

brot (1963). Portfolios composed using the classical “normal” mean-variance

portfolio optimization are subject to potential large losses originated by the

fat-tailedness of asset returns. Our contribution is to evaluate the economic

value of taking into account the possibility of large losses in portfolio selec-

tion.

In the existing literature one stream of research investigates the effect

of the inclusion of higher moments in portfolio allocation. A problem with

this approach is that it requires the estimation of possibly many higher-

order cross-moments; see Martellini and Ziemann (2010) for a recent refer-

ence. Another approach focuses on constraining the portfolio downside risk

via VaR or another risk measure; see for instance Alexander and Baptista

(2002). This literature focuses mostly on probabilistic properties and es-

timation methods rather than on the economic significance of using large

losses as a criterion in portfolio selection.

The concept of limiting downside risk goes back to Roy (1952) who

introduced into portfolio selection the principle of safety-first. Roy used the

first two moments of the assets return distribution to limit the probability
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of a disastrous loss. The study of portfolio selection for safety-first investors

used the assumption of normally distributed asset returns for some time. An

essentially distribution free approach was taken by Arzac and Bawa (1977)

who used VaR as a downside risk measure. A later paper on portfolio

allocation with safety-first without the normality assumption is Gourieroux

et al. (2000) who use a non-parametric estimate of the full distribution of the

asset returns. Jansen et al. (2000) concentrates on estimating the portfolio

fat-tail distribution using the safety-first principle combined with statistical

extreme value theory to limit downside risk.

These criteria for portfolio selection, based on the tail properties of the

asset return distribution, often choose a corner solution, meaning that they

put most weight on the asset with the thinnest tail. This has been observed

by, for instance, Jansen et al. (2000), Hartmann et al. (2004) and Poon et al.

(2003). The theoretical explanation for this is in a result from Geluk and

de Hann (1987). They show that the tail-heaviness of the convolution of

heavy-tailed variables is determined mainly by the variable with the heav-

iest tail. Corner solutions are a serious drawback in the use of heavy tail

modeling with the safety-first principle. Hyung and de Vries (2007) attempt

to overcome the corner solution problem by using a second order expansion

at infinity of the asymptotically Pareto tail probability. We take a simpler

route. We choose the portfolio with the thinnest tail among the set of pos-

sible efficient minimum variance portfolios. With this criterion, on the one
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hand we do not lose the diversification effect of mean-variance portfolios in

“normal” times; on the other hand we keep the probability of large losses

under control for the abnormal “heavy-tailed” market times.

In order to evaluate the economic value of controlling for the proba-

bility of a portfolio large loss we consider a mean-variance investor who is

not willing to ignore the risk of a large loss. We suppose that the possible

investment alternatives are the set of possible efficient minimum variance

portfolios formed in a universe of assets. We opt for using minimum vari-

ance portfolios because there is evidence (see for instance Brandt (2009))

that due to the difficulty of estimating the mean portfolio return, minimum

variance portfolios can actually perform better than tangency mean-variance

portfolios.

Our investor chooses from among these minimum variance portfolios

the one with the smallest probability of incurring a large loss. With this

approach we avoid the corner solution problem arising from using the safety-

first principle with extreme value modeling. At the same time our approach

inherits the diversification effect from the mean-variance construction.

For the estimation of the probability of a portfolio large loss we use a

semi-parametric estimator introduced by de Haan and de Ronde (1998).

The advantage of this estimator is that it does not assume any particular

parametric family for the dependence structure between large losses on the

assets that form the portfolio. This is a clear statistical advantage when
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estimating the probability of events for which the number of observations is

by definition small.

The data for our analysis consist of monthly returns on the constituents

of the Dow Jones Industrial Average. We consider as a benchmark an in-

vestor who chooses the global minimum variance portfolio among the pos-

sible investment alternatives. For comparison we also consider a strategy

where the minimum VaR portfolio is chosen. To evaluate the appropriate-

ness of the semi-parametric estimator we use as an alternative a standard

extreme value parametric tail estimator.

Our results indicate that the strategies that control for the probability

of a large loss outperform the pure global minimum variance portfolio strat-

egy, where the performance is measured by the Sharpe and Sortino ratios.

We also find that an investor would pay a positive fee to change from the

global minimum variance strategy to a strategy which controls for the tail

probability. Further, the use of the semi-parametric estimator outperforms

both the use of a standard extreme value parametric tail estimator and the

minimum VaR strategies. These results are robust to transaction costs.

The organization of this paper is as follows. In Section 2 we describe the

methodology that we use in our study. In Section 3 we present our empirical

study and the results obtained. Section 4 concludes the paper.
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2 Methodology

Our methodology for evaluating the economic value of controlling for large

losses in portfolio allocation is to calculate the effect of taking into account

the probability of a large loss on the performance of portfolios. Our universe

of assets is the set of stocks that form the Dow Jones Industrial Average

(DJIA). Starting in October 1991, using data since February 1973, every

month we form portfolios with all the possible combinations of three dif-

ferent assets. We use portfolios of three assets for computational ease and

because the portfolio diversification effect is largely attained with few assets

as reported in Solnik (1995).

We present the results of using four strategies. The first is a benchmark

strategy. For each three asset combination we calculate the global minimum

variance efficient portfolio. From among all the global minimum variance

portfolios we choose the one with the smallest variance. For the second

strategy, we estimate the probability of a large loss over one month for

each of the minimum variance portfolios using a semi-parametric estimator.

The strategy consists of choosing the minimum variance portfolio with the

smallest probability of a large loss. We call this strategy the minimum large

loss strategy. In the third strategy, we compute the tail-heaviness of each

minimum variance portfolio using a parametric tail-index estimator, then we

choose the portfolio with the thinnest losses tail (lower tail-index). Finally,

in the fourth strategy we choose the portfolio with the minimum VaR. In
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this strategy we assume multivariate normality. The returns distribution

is usually misspecified under this assumption but the VaR estimator has a

closed form expression. If this strategy were to perform better we could

conclude that specification error is less of a problem than estimation error.

For all strategies we assume that short-selling is not allowed and that

the investor can not hold cash in the portfolio. These assumptions seem

reasonable in many practical cases. We keep the weights of the portfolios

constant for one month and after one month we recalculate the four portfo-

lios according to each strategy using the previous 224 months of data. We

continue with the four strategies until June 2010. We obtain 224 out-of-

sample monthly returns for each strategy. We evaluate the performance of

each strategy implied by these returns and compare the results.

2.1 The global minimum variance portfolio (Strategy 1)

Our benchmark strategy is the classical Merton (1972) global minimum vari-

ance portfolio on the efficient mean-variance boundary. For a number of n

securities, the minimum variance portfolio weights are the elements of the

vector wσ,

wσ =
Σ−11

1TΣ−11
, (1)

where 1 is the n×1 unit vector and Σ is the n×n variance-covariance matrix

of the portfolio asset returns. The reasons why we choose as a benchmark

the minimum variance portfolio are first that we want to avoid our results
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of being driven by the expected value of the asset returns, and second that

our goal is exactly to measure the economic value of minimizing the risk of

the portfolio.

2.2 Estimation of the probability of a large loss (Strategy 2)

In our second strategy we follow a semi-parametric approach to estimate the

probability of a portfolio large loss. Concretely, we use a semi-parametric es-

timator for estimating the probability of large events, introduced by de Haan

and de Ronde (1998) in the context of Extreme Value Theory. We choose

to use this semi-parametric estimator for two main reasons. Firstly, it is a

multivariate estimator in the sense that it uses information from all the uni-

variate asset returns. By comparison, a univariate estimator uses only the

characteristics of the portfolio return (univariate) distribution. As a conse-

quence, we expect better portfolio performance using the semi-parametric

estimator. Secondly, unlike multivariate parametric estimators, it does not

assume any particular family for the dependence structure of the returns.

Due to the small number of observations of large losses this is an obvi-

ous advantage over fully-parametric estimators. With few observations the

choice of a parametric family for the dependence structure of large losses

would have to rely mainly on economic arguments and very little on the

robustness of statistical inference. Due to the semi-parametric nature of the

estimator increasing the number of assets in the portfolio does not make the
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estimation more difficult.

Here we summarize briefly how to estimate the probability of portfo-

lio large losses using this estimator. For a detailed statistically orientated

exposition and implementation see Dias (2009).

Denote by Ri the random variable representing the monthly returns on

asset i. The portfolio return Rp is the weighted average of the individual

asset returns, Rp = w1R1 + w2R2 + . . . + wdRd, where d is the number of

assets in the portfolio and wi is the weight of asset i. We want to estimate

the probability of a portfolio return loss being larger than a given value L1.

There is a set C of possible (multivariate) asset returns whose realization

implies a portfolio return loss larger than L. C is a set of d-dimensional

asset returns. Estimating the probability of a portfolio loss larger than

L is equivalent to estimating the probability of having a (d-dimensional)

realization of asset returns in C.

Given that portfolio large losses are not often observed there are few

observations from historical data in the set C. This is the main challenge

in estimating tail probabilities. We approach it using a theoretical result

from de Haan and Resnick (1977). This result shows that, under conditions

usually seen in practice, there is a relation between the probability of a

portfolio large loss and the probability of a portfolio small loss. As small

1Typically L corresponds to a quantile of the portfolio losses distribution of 90% or

higher.
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losses are not uncommon in a portfolio, we can estimate its probability more

reliably. de Haan and Resnick (1977) show that the two probabilities are

related by a multiplicative constant that we can also estimate. If we know

the relation between the probability of small and large losses then we can

obtain an estimate for the probability of a portfolio large loss.

In this approach, in order to estimate the probability of a portfolio large

loss, we standardize the individual asset returns. Given that we are inter-

ested in tail observations, the standardization is done with the parameters of

the distribution of the asset maximum return. Specifically, the standardized

returns, for each asset i, are given by R̃i = (1 + γ(Ri − b)/a)1/γ , where γ

is the shape parameter (tail index), and b and a are respectively location

and scale parameters of asset i returns. The parameters γ, b and a must

be estimated. We follow here de Haan and de Ronde (1998) for estimating

them. The estimators are reported in the Appendix. The set of asset re-

turns belonging to C, after being standardized, is denoted by cA, where c

is a positive scalar and A is a d-dimensional set. The standardized asset re-

turns in cA correspond to portfolio large losses, and if c is large, the returns

in A correspond to “not so large” portfolio losses.

Historical observations in A are not scarce and we can estimate its prob-

ability, p̂(A). For this, we use the estimator p̂ proposed by de Haan and

Resnick (1993),

p̂(A) =
1

k

n∑
t=1

I(R̃t ∈ A), (2)
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where R̃t are all the observed (d-dimensional) standardized asset returns, n

is the number of historical observations, I(·) represents the indicator function

and k is the number of upper-order statistics used to estimate the shape

parameter γ. We use k = 0.2× n. For a discussion on the choice of k in the

context of portfolio large returns see Dias (2009) and references therein.

Given the standardization performed on the asset returns, the expected

value of R̃i is one. Hence, if the boundary2 of the set A contains the unit

vector then the set A has a significant proportion of the historical observa-

tions and we can obtain a reliable estimate of its probability. This motivates

the definition of the constant c given in Dekkers et al. (1989). c is uniquely

defined as the scalar such that the unit vector is on the lower boundary of

A; see Appendix.

From de Haan and Resnick (1977) we have the following estimator for

the probability of a portfolio large loss:

p̂(C) =
k

nc
p̂(A). (3)

2.3 Parametric estimation of the portfolio tail heaviness

(strategy 3)

The semi-parametric estimator described in the previous section takes into

account the characteristics of all the univariate asset returns distributions.

2For a precise mathematical exposition see Dekkers et al. (1989).
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We want to investigate whether there is economic value in using informa-

tion from the individual assets to estimate the probability of a portfolio large

loss. To do this we compare the performance of the portfolios found using

the semi-parametric estimator (strategy 2) with the performance using a uni-

variate maximum likelihood estimator of the portfolio tail-heaviness (strat-

egy 3). This estimator uses information from the univariate distribution

of the portfolio returns and not directly the individual assets distributional

characteristics. We call this the minimum tail-index strategy.

We use the so-called peaks-over-threshold (POT) method which is per-

haps the most popular statistical method for estimating the tail heaviness

of a random variable. For an application in finance see for instance Longin

and Solnik (2001). The POT method is based on a theoretical result from

Balkema and de Haan (1974) and Pickands (1975).

Let R denote the portfolio returns variable with distribution function

FR. For simplicity we concentrate here on the tail of the positive values of

the variable. Apart from a change of sign everything works analogously for

the negative values.

The upper end point of the density function associated with FR is de-

noted by xF . In the case of a normally distributed random variable, for

instance, xF = +∞. The extremes of the variable are defined in terms of

the exceedances over a threshold u < xF . The excess distribution function of

the random variable R over the threshold u is Fu(x) = P (R−u < x|R > u),
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x ≥ 0. For statistical purposes we use the following result from extreme

value theory that gives an approximation for the distribution function of

the exceedances. Balkema and de Haan (1974) and Pickands (1975) show

that there exists a unique non degenerate limit distribution, Gξ,β, such that

limu→xF sup0<x<xF−u |Fu(x)−Gξ,β(x)| = 0.3

The limit distribution Gξ,β is the generalized Pareto distribution and has

the form

Gξ,β(x) = 1− (1 + ξx/β)−1/β (4)

where x ≥ 0 if ξ ≥ 0 and 0 ≤ x ≤ −β/ξ if ξ < 0. ξ is the tail heaviness pa-

rameter and β is a parameter depending on u. Distributions with a power

tail (heavy tailed distributions as the Student-t for instance) have ξ > 0,

distributions with exponential tail (thin tailed distributions as the normal

distribution) have ξ = 0 and distributions with a finite tail (as the uni-

form distribution for instance) have ξ < 0. We estimate the parameters of

the distribution by maximum likelihood. More details about the statistical

procedure can be found for instance in Embrechts et al. (1997).

2.4 The minimum VaR portfolio (strategy 4)

In the spirit of mean-variance analysis, Alexander and Baptista (2002) define

the mean-VaR efficient frontier where VaR replaces the standard deviation

as measure of risk. In this setup the portfolio weights are obtained by

3This result is also valid for non-i.i.d. processes; see Leadbetter et al. (1983).
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minimizing the VaR for a target portfolio expected return. Alexander and

Baptista (2002) assume that the returns on the assets have a multivariate

normal distribution and derive a closed form solution for the minimum VaR

portfolio analogous to the minimum variance portfolio. We use the global

minimum VaR portfolio as a benchmark for strategies where tail risk is

considered.

Let n ≥ 2 be the number of securities. The n × 1 vector of expected

returns of each asset is denoted by µ and Σ is the n×n variance-covariance

matrix of the asset returns. In order to give the minimum VaR portfolio

we need to define the following constants: A = 1TΣ−1µ, B = µTΣ−1µ,

C = 1TΣ−11 and D = BC − A2, where 1 is the n × 1 unit vector. Let Φ

be the distribution function of a univariate standard normal variable. The

minimum VaR portfolio at the 100t% confidence level, with t ∈ (1/2, 1) and

t > Φ(
√
D/C), is given by

mt = g + h

(
A

C
+

√
D

C

(
(t∗)2

(t∗)2C −D
− 1

C

))
, (5)

where g and h are the n × 1 vectors g = (1/D)[B(Σ−1l) − A(Σ−1µ)] and

h = (1/D)[C(Σ−1µ)−A(Σ−1l)]. The point t∗ is such that Φ(−t∗) = 1− t.

2.5 Measurement of the economic value

To measure the value of incorporating the probability of large losses in port-

folio selection we compare the performance of the strategies that use the tail

probability to that of the minimum variance strategy.
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Chamberlain (1983) shows that if asset returns have an elliptical dis-

tribution then the mean-variance approximation of the expected utility is

exact for all utility functions. Even without assuming ellipticity we can

use quadratic utility as a second order approximation to the investor’s true

utility function. In this case the realized utility at time t is

U(Wt) = Wt−1Rp,t −
αW 2

t−1
2

R2
p,t,

where Wt is the investor’s wealth at time t, α is his absolute risk aversion and

Rp,t is the portfolio return for period t. For comparison purposes between

strategies we assume that αWt is constant which implies a constant relative

risk aversion γ = αWt/(1 − αWt). We use the values of γ = 1 and γ = 10

in our analysis.

We estimate the expected utility using the average realized utility. The

value of a strategy is estimated by equating the average realized utilities for

the two alternative strategies. We suppose that holding a portfolio other

than the minimum variance portfolio subject to expenses δ yields the same

average utility as holding a minimum variance portfolio. An investor should

be indifferent between these two strategies. Hence, δ is the maximum fee

that an investor would be willing to pay to switch from a minimum variance

portfolio to the alternative strategy. If δ is expressed as a fraction of the

initial wealth invested, δ solves the following equation:

T∑
t=1

(Rs,t − δ)−
γ

2(1 + γ)
(Rs,t − δ)2 =

T∑
t=1

Rp,t −
γ

2(1 + γ)
R2
p,t, (6)
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where Rp,t and Rs,t denote the returns on the minimum variance portfolio

and on the alternative strategy portfolio, respectively.

3 Data and empirical results

The data used in our study is collected from Datastream and covers the

period from February 1973 until June 2010. From the 30 components of

DJIA we use the data from the 24 stocks for which prices are available for

the whole period. We have approximately 37 years of monthly returns on

24 stocks which translates into 448 monthly return observations per stock.

In each month, from November 1991 until June 2010, we compute all

the minimum variance portfolios for the 2,024 possible combinations of 3

different stocks from the 24 stocks available. From these 2,024 minimum

variance portfolios we choose three portfolios, one according to each of the

first three strategies: the portfolio with the smallest variance, the portfolio

with the lowest probability of a portfolio loss larger than 0.10 (using the

semi-parametric estimator), the portfolio with the smaller loss tail-index

(using the classic parametric estimator). For the fourth strategy we calculate

the 2,024 minimum 90% VaR portfolios and choose the one with smallest

VaR.

After one month we calculate the monthly portfolio returns and we adjust

the composition of each of the four portfolios, using the previous 224 months

of data. We repeat the procedure until June 2010, obtaining 225 portfolios
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and 224 portfolio returns for each strategy. The analysis of these (out-of-

sample) portfolio returns follows.

3.1 Portfolio returns analysis

We split the period from November 1991 until June 2010 into four subperiods

with equal length. We perform the analysis and report the results for each

of these subperiods as well as for the entire period.

The annualized mean realized return is reported in Table 1. We observe

that the average return varies considerably across the different subperiods.

The highest average for the entire sample is obtained by the minimum large

loss strategy as well as in three of the four subperiods.

We do not report the standard deviation but rather the semi-standard

deviations4 because we are interested in breaking down the negative and the

positive portfolio risk and performance. For all four strategies the results are

good in the sense that the negative semi-standard deviation is smaller than

the positive semi-standard deviation for the entire sample and for most of the

subperiods. The negative semi-standard deviation for the minimum large

loss and minimum tail-index strategies are higher than for the minimum

variance strategy. This is consistent with results from Dittmar (2002), Har-

vey and Siddique (2000) and Mitton and Vorkink (2007) where investors are

shown to be willing to accept a lower expected return and higher volatility

4Recall that the positive semi-variance is estimated by σ+2 = 1/T
∑T
i=1([Ri−E(R)]+)2,

where T is the number of observations.
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compared to the mean-variance benchmark in exchange for higher skewness.

In terms of formal measures of performance we report the Sharpe ra-

tio and the Sortino ratio. The riskless rate used to calculate the Sharpe

ratio is the one-month US-Treasury bond rate. The minimum large loss

strategy attains the best Sharpe ratios in all cases except for the period

03/2001–10/2005. These results are confirmed by the Sortino ratios (calcu-

lated with a minimum acceptable return equal to the riskless rate). Given

that the Sortino ratio penalizes specifically the returns below the minimum

acceptable return our results indicate that reducing the probability of large

portfolio losses have an effect on controlling for downside risk.

[Insert Table 1]

Although the minimum large loss strategy does not have the lowest neg-

ative semi-standard deviation, neither does it produce the lowest returns.

We see in Table 2 that the minimum tail-index strategy has the lowest re-

turns in the entire sample and in two of the subperiods. Also, the minimum

tail-index strategy attains a minimum return lower than the minimum large

loss strategy in four out of the five periods (including the entire sample).

This is an indicator of the greater power of the semi-parametric estimation

compared with the classic parametric estimation of the loss tail in terms of

portfolio selection. We observe that, with the exception of the last subpe-

riod, the maximum return is substantially larger using the minimum large

loss strategy. On the one hand, this is not surprising when compared with
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the minimum variance strategy where by construction the positive part of

the volatility is also minimized. On the other hand, this result shows that

minimizing the probability of a large loss instead of the variance has also an

effect on the positive portfolio returns.

We report in Table 2 the realized frequency of negative returns. Differ-

ences between the different strategies are not so great. The strategy with

the lowest frequency is the minimum large loss strategy mainly due to a

substantially lower realized frequency in the subperiod 11/1991–06/1996.

We also list in Table 2 the skewness and the kurtosis of the realized

portfolio returns. It is noticeable that the minimum large loss strategy has

the most positive skewness, which agrees with the fact that it has the largest

maximum return. Also in line with this fact is the high kurtosis that the

minimum large loss strategy attains in the second and fourth subperiods.

The lowest kurtosis is attained by the minimum variance and minimum VaR

strategies in the subperiod 11/1991–06/1996. Note that this subperiod has

the smaller difference between maximum and minimum realized portfolio

returns.

[Insert Table 2]

3.2 Economic value

We evaluate the economic value of each strategy by calculating, using equa-

tion (6), the fee that an investor with constant risk aversion would be willing
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to pay to change from the minimum variance strategy an alternative strat-

egy.

The results reported in Table 1, columns δ1 and δ10, suggest that incor-

porating tail information in portfolio selection implies substantial differences

in the out-of-sample portfolio returns. There are also differences between

the strategies. We first look at the results for an investor with γ = 1.

For the entire sample the minimum large loss and minimum VaR strategies

present gains relative to the minimum variance strategy of 2.62% and 0.75%

respectively. These values are economically significant in accordance with

the literature. In the first subperiod the three strategies produce a positive

fee where the minimum large loss strategy has the highest gain and the VaR

strategy the lowest. In the second period the VaR strategy presents a loss of

2.06%. In the third subperiod only the VaR strategy has a gain. In the last

subperiod only the minimum large loss strategy has a gain, 4.98%. The rel-

ative results between strategies for an investor with a constant risk aversion

γ = 10 are similar to an investor with γ = 1.

Overall, the minimum large loss strategy performs best, followed by the

minimum VaR strategy. The poorer performance of the minimum tail index

strategy is probably due to loss of information. The minimum tail-index

strategy models the tail of the univariate portfolio return distribution while

the other two strategies use information from all the individual stocks in the

portfolio.
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3.3 Portfolio weights analysis

In order to analyze the portfolio weights we define two variables: the min-

imum portfolio weight in each portfolio and the maximum portfolio weight

in each portfolio. We calculate the average and the standard deviation of

the minimum and of the maximum weight for the entire sample and for the

four subperiods. The results, reported in Table 3, show that the minimum

large loss strategy has the lower minimum and the larger maximum in all

subperiods. Safety-first strategies, based only on minimizing the tail prob-

ability, are known to produce portfolios where most of the weight is in the

stock with smaller loss probability (see for instance Jansen et al. (2000),

Hartmann et al. (2004) and Poon et al. (2003)). Here this does not hap-

pen. Our two stage procedure of choosing the minimum variance portfolio

with the smallest probability of a large loss avoids corner solutions for the

portfolio weights. As a consequence the portfolio keeps both the variance

diversification effect and a small probability of a large loss.

[Insert Table 3]

3.4 Robustness to transaction costs

We evaluate the effect of transaction costs on the performance of the differ-

ent portfolios by supposing that there is a fixed transaction cost c on each

traded dollar for any stock. We assume that c includes transaction fees,

commissions and bid-ask spread. The total transaction cost is a function of
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the turnover rates of all the stocks in the portfolio.

Denote the portfolio weights at the beginning of month t, after choosing

the new portfolio, by the d × 1 vector wt and the assets’ returns on month

t by the d × 1 vector Rt, where d is the number of assets in the portfolio.

The weight of stock i in the portfolio during month t is wi,t and the return

on stock i on month t is Ri,t. The portfolio return in month t is Rtwt.

The turnover rate in month t, after choosing the new portfolio, is

TOt =
d∑
i=1

∣∣∣∣wi,t+1 − wi,t
1 +Ri,t

1 +Rtwt

∣∣∣∣ .
In Table 4 we report the average turnover rate for the four strategies.

We observe that the minimum VaR and minimum variance strategies have

the lowest turnover rates. The minimum large loss strategy has the highest

turnover rates. That means that this strategy will be more expensive to

implement due to higher transaction costs. Hence, we analyze the effect of

transaction costs on the economic value of each strategy.

The total transaction cost in month t per dollar invested is c TOt. The

portfolio return net of transaction costs on month t is Rtwt − c TOt. We

assume a transaction cost of c = 20 basis points and use (6) to calculate the

fee that an investor would be willing to pay to change from the minimum

variance strategy to one of the others. The results are given in Table 4. The

minimum large loss strategy continues to have gains in all periods but one,

the same as the case without transaction costs. The minimum tail-index

and minimum VaR strategies have a positive fee only in the first subperiod
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11/1991–06/1996.

We conclude that the minimum large loss strategy presents the high-

est gains when changing from the minimum variance strategy even when

transaction costs are taken into account.

[Insert Table 4]

4 Conclusion

It is well known that the mean-variance approach to portfolio selection does

not take into account the large losses that are observed in the market. Even

when constraining the portfolio selection by minimizing the downside risk, if

multivariate normality is assumed, the potential portfolio large losses are still

most likely to be underestimated. To overcome this shortcoming researchers

have included higher moments in portfolio selection, or estimated portfolio

large losses using extreme value theory. The first approach quickly becomes

unfeasible because a large number of cross-moments has to be estimated; the

second approach usually yields corner solutions where most of the portfolio

weight is on the asset with the thinnest tail. These approaches leave still

unanswered the question of the economic value of taking large losses into

account in portfolio selection.

Our study shows that minimum variance portfolios with lower proba-

bility of portfolio large losses outperform minimum variance portfolios. We
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find that with this methodology we avoid corner solutions and that an in-

vestor is willing to pay a positive fee to change from a minimum variance to

a minimum variance with low probability of large losses strategy.

Using a semi-parametric estimator for the probability of a portfolio large

loss leads to a best ex post performance when compared with portfolio selec-

tion using a classical parametric (univariate) portfolio tail estimator. This

result is explained by the fact that the semi-parametric estimator uses di-

rectly information from all the portfolio components while the classical es-

timator uses only information from the univariate portfolio distribution.

The minimum VaR strategy performance lies between the other two tail

estimation portfolio strategies. On the one hand VaR uses information from

all the assets in the portfolio. On the other hand, it underestimates the

probability of large losses because it assumes (in our study) multivariate

normality.

Using the semi-parametric estimator for the probability of a portfolio

large loss produces strategies with higher turnover rates associated with

higher transaction costs. Nevertheless, when transaction costs are included

our results show that an investor would still be willing to pay a positive fee

of 24 to 49 basis points per year to change from minimum variance to a

minimum large loss strategy.
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5 Appendix

Here we present the estimators used to compute the parameters a, b, γ, c

and k involved in the estimation of the probability of a portfolio large loss

in Section 2.2.

Consider a finite random sample with size n of univariate asset returns

R1, R2, . . . , Rn. If we denote the ordered sample returns as R(n) ≤ R(n−1) ≤

. . . ≤ R(1) then R(k) is called the kth upper-order statistic.

5.1 The shape parameter (tail index)

Define the function,

Mr(R) :=
1

k

k∑
i=1

(
logR(i) − logR(k+1)

)r
.

for r = 1, 2. The so-called moment estimator of the shape parameter γ

(Dekkers et al. (1989)), is given by

γ̂ := M1(R) + 1− 1

2

(
1− M1(R)2

M2(R)

)−1
. (7)

This is a consistent estimator of the shape parameter. Under an additional

technical condition (Dekkers et al. (1989)) we have that if γ ≥ 0 then
√
k(γ̂−

γ) has asymptotically a normal distribution with mean zero and variance 1+

γ2. For the case γ < 0 (less common in finance applications) the distribution

of the statistic γ̂ has a more complex expression (see Dekkers et al. (1989)).
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5.2 The normalizing constants

To estimate the normalizing constants a and b, the parameters of the uni-

variate extreme value distribution, we use estimators studied by Dekkers

et al. (1989). Define the functions t̄, ρ1 and ρ2 as

t̄ = t ∧ 0 , ρ1(t) =
1

1− t̄
and ρ2(t) =

2

(1− t̄)(1− 2t̄)
.

Then, the estimators for a and b are

b̂ := R(k+1) (8)

â :=
R(k+1)

√
3M1(R)2 −M2(R)√

3(ρ1(γ̂))2 − ρ2(γ̂)
. (9)

5.3 The scaling constant c and the set A

To calculate the probability of observing large joint movements in a set C,

for some loss L, we need to estimate the scaling constant c and the set A.

We have to impose a condition in order to have c and A uniquely defined.

We need A to have enough observations R̃ so that we can use the non-

parametric estimator (2). Given that R̃ are standardized observations with

unit mean, this happens if we impose the requirement that the unit vector

1 is on the boundary of A (Dekkers et al. (1989)).

Given a set C, for some L, we can always define a function f∗(R) such

that

C = {R | f∗(R) ≥ 1} ,

Each point R in the set of large losses can be written as the transform
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of a point R̃ by the inverse mapping of R̃ :=
(
1 + γ̂(R− b̂)/â

)1/γ̂
,

R = a
R̃
γ − 1

γ
+ b.

At this point we assume that the function f∗ is defined for the case when all

returns take the same value. This assumption should not be too restrictive

in practice. Hence, from the definition of the function f∗ there exists a value

x such that R = (x, x, . . . , x) is solution of the equation f∗(R) = 1 which

is equivalent to the existence of a value c such that c.1 is a solution of the

equation

f∗

(
a

(s1)
γ − 1

γ
+ b

)
= 1.

For this c the unit vector is on the boundary of A. Since we have only

estimates of a, b and γ we can find only an estimate ĉ of c as the solution

of f∗(â((c1)γ̂ − 1)/γ̂ + b̂) = 1.

Finally, given that cA is the set of asset returns belonging to C after

being standardized, we define

Â :=
1

ĉ

(
1 + γ̂

C − b̂

â

)1/γ̂

as the estimator of A.
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Table 1: Ex post performance of each strategy

Period Obs. µ σ− σ+ SR SoR δ1 δ10
Panel A: Minimum variance strategy

Entire sample 224 0.0675 0.1001 0.1103 0.189 0.266 - -
11/1991–06/1996 56 0.0774 0.0606 0.0853 0.268 0.409 - -
07/1996–02/2001 56 0.1365 0.1127 0.1465 0.461 0.701 - -
03/2001–10/2005 56 0.0682 0.0883 0.1029 0.139 0.201 - -
11/2005–06/2010 56 -0.0073 0.1261 0.0964 -0.333 -0.398 - -

Panel B: Minimum large loss strategy (semi-parametric)

Entire sample 224 0.0986 0.1130 0.1474 0.315 0.491 2.62 2.37
11/1991–06/1996 56 0.2085 0.0657 0.1234 1.182 2.130 12.08 11.94
07/1996–02/2001 56 0.1743 0.1254 0.1798 0.557 0.910 3.02 2.74
03/2001–10/2005 56 -0.0189 0.1366 0.1212 -0.350 -0.450 -8.55 -8.84
11/2005–06/2010 56 0.0452 0.1111 0.1572 -0.016 -0.026 4.98 4.73

Panel C: Minimum tail-index strategy (parametric)

Entire sample 224 0.0667 0.1214 0.1284 0.154 0.215 -0.30 -0.49
11/1991–06/1996 56 0.1623 0.0621 0.1059 0.941 1.594 7.86 7.80
07/1996–02/2001 56 0.1436 0.1319 0.1544 0.453 0.656 0.46 0.31
03/2001–10/2005 56 0.0038 0.1374 0.1165 -0.234 -0.298 -6.39 -6.67
11/2005–06/2010 56 -0.0307 0.1373 0.1318 -0.395 -0.517 -2.62 -2.83

Panel D: Minimum VaR strategy

Entire sample 224 0.0756 0.0997 0.1119 0.240 0.341 0.75 0.74
11/1991–06/1996 56 0.1112 0.0467 0.0840 0.653 1.114 3.21 3.26
07/1996–02/2001 56 0.1145 0.1283 0.1484 0.323 0.466 -2.06 -2.16
03/2001–10/2005 56 0.0888 0.0721 0.1084 0.299 0.493 1.98 2.01
11/2005–06/2010 56 -0.0078 0.1262 0.0964 -0.336 -0.402 -0.05 -0.05

For the entire sample and four subperiods we summarize in this table the ex post perfor-

mance of each of the strategies. We report the annualized realized mean return (µ), the

annualized realized negative (positive) semi-volatility (σ− (σ+)), the realized Sharpe ratio

(RS), the realized Sortino ratio (SoR) and the average annualized percentage fee (δγ)

that an investor with constant risk aversion of γ = 1 or γ = 10 would be willing to pay to

change from the minimum variance strategy to each of the other strategies considered.



Table 2: Descriptive statistics of the portfolio returns for each strategy

Period Min 5% Med 95% Max p− m3 m4

Panel A: Minimum variance strategy

Entire sample -0.878 -0.562 0.093 1.176 4.445 0.428 -0.421 1.485
11/1991–06/1996 -0.502 -0.416 0.054 0.840 1.042 0.446 -0.060 -0.833
07/1996–02/2001 -0.743 -0.626 0.171 1.530 4.445 0.357 -0.121 0.109
03/2001–10/2005 -0.841 -0.454 0.086 1.312 2.024 0.464 -0.498 3.030
11/2005–06/2010 -0.878 -0.631 0.060 1.033 1.619 0.446 -0.963 1.555

Panel B: Minimum large loss strategy (semi-parametric)

Entire sample -0.811 -0.645 0.104 1.786 14.800 0.401 0.408 2.431
11/1991–06/1996 -0.545 -0.475 0.295 1.278 2.183 0.285 -0.082 -0.030
07/1996–02/2001 -0.786 -0.706 0.180 2.039 9.249 0.392 0.214 1.008
03/2001–10/2005 -0.811 -0.708 -0.003 1.412 2.318 0.499 -0.259 -0.262
11/2005–06/2010 -0.779 -0.599 0.077 1.561 14.800 0.428 1.533 6.860

Panel C: Minimum tail-index strategy (parametric)

Entire sample -0.948 -0.551 0.106 1.581 5.379 0.419 -0.485 1.927
11/1991–06/1996 -0.536 -0.432 0.268 1.106 2.128 0.339 -0.173 0.047
07/1996–02/2001 -0.876 -0.678 0.284 1.905 3.319 0.375 -0.542 0.447
03/2001–10/2005 -0.948 -0.557 0.017 1.284 3.200 0.464 -1.025 4.754
11/2005–06/2010 -0.823 -0.690 -0.007 1.484 5.379 0.499 0.163 0.950

Panel D: Minimum VaR strategy

Entire sample -0.879 -0.580 0.090 1.292 4.321 0.424 -0.427 1.620
11/1991–06/1996 -0.422 -0.350 0.094 0.817 1.219 0.392 0.125 -0.408
07/1996–02/2001 -0.797 -0.681 0.183 1.551 4.321 0.357 -0.323 0.236
03/2001–10/2005 -0.734 -0.397 0.027 1.410 2.706 0.499 0.299 1.583
11/2005–06/2010 -0.879 -0.631 0.059 1.022 1.620 0.446 -0.965 1.580

We report in this table the descriptive statistics of the realized portfolio returns: annu-

alized minimum, median and maximum realized returns (Min, Med, Max), annualized

realized 5% and 95% quantiles (5%, 95%), realized frequency of negative returns (p−),

realized skewness (m3) and realized kurtosis (m4).



Table 3: Portfolio allocation analysis

Minimum weight Maximum weight
Period Mean Stdev Mean Stdev

Panel A: Minimum variance strategy

Entire sample 0.190 0.043 0.506 0.023
11/1991–06/1996 0.164 0.030 0.477 0.018
07/1996–02/2001 0.150 0.020 0.507 0.016
03/2001–10/2005 0.204 0.032 0.532 0.005
11/2005–06/2010 0.241 0.003 0.508 0.004

Panel B: Minimum large loss strategy (semi-parametric)

Entire sample 0.081 0.106 0.615 0.151
11/1991–06/1996 0.007 0.005 0.639 0.071
07/1996–02/2001 0.101 0.106 0.635 0.185
03/2001–10/2005 0.128 0.114 0.590 0.177
11/2005–06/2010 0.090 0.113 0.595 0.143

Panel C: Minimum tail-index strategy (parametric)

Entire sample 0.139 0.057 0.586 0.096
11/1991–06/1996 0.096 0.053 0.615 0.106
07/1996–02/2001 0.124 0.047 0.603 0.086
03/2001–10/2005 0.148 0.052 0.589 0.107
11/2005–06/2010 0.189 0.032 0.537 0.063

Panel D: Minimum VaR strategy

Entire sample 0.190 0.045 0.521 0.012
11/1991–06/1996 0.143 0.003 0.515 0.002
07/1996–02/2001 0.156 0.021 0.526 0.014
03/2001–10/2005 0.219 0.028 0.532 0.007
11/2005–06/2010 0.242 0.002 0.511 0.003

The table illustrates the distribution of the assets weights in each port-
folio. We present the mean and the standard deviation of the minimum
and maximum asset weights in each portfolio. Stdev stands for standard
deviation.



Table 4: Turnover and robustness to transaction costs

Period Turnover δ1 δ10
Panel A: Minimum variance strategy

Entire sample 0.048 - -
11/1991–06/1996 0.043 - -
07/1996–02/2001 0.079 - -
03/2001–10/2005 0.047 - -
11/2005–06/2010 0.022 - -

Panel B: Minimum large loss strategy (semi-parametric)

Entire sample 0.927 0.49 0.24
11/1991–06/1996 0.794 10.32 10.18
07/1996–02/2001 1.185 0.32 0.045
03/2001–10/2005 0.920 -10.47 -10.76
11/2005–06/2010 0.808 3.06 2.82

Panel C: Minimum tail-index strategy (parametric)

Entire sample 0.575 -2.57 -2.76
11/1991–06/1996 0.612 5.25 5.18
07/1996–02/2001 0.527 -2.16 -2.31
03/2001–10/2005 0.726 -8.35 -8.63
11/2005–06/2010 0.432 -4.41 -4.62

Panel C: Minimum VaR strategy

Entire sample 0.042 -1.46 -1.47
11/1991–06/1996 0.020 0.92 0.96
07/1996–02/2001 0.082 -4.63 -4.73
03/2001–10/2005 0.046 -0.14 -0.10
11/2005–06/2010 0.020 -1.89 -1.89

In this table we report the average turnover rate and the average annu-
alized percentage fee (δγ) that an investor with constant risk aversion
of γ = 1 or γ = 10 would be willing to pay to change from the minimum
variance strategy to each of the other strategies considered.


